
A2NT OCR Sudoku Solver

OCR - Rapport 2

Soutenance de Projet

Décembre 2023

Erwan LE GRAND - Alexis LATOURNERIE
Thomas GRAVELINE-MERCIER - Nathan CHAMPAGNE

Projet S3 - EPITA 2027 1

A2NT OCR Sudoku Solver

Table des matières

1 Introduction 4
1.1 Présentation du groupe . 4
1.2 Description d’un OCR et du projet . 4

2 Répartition des charges 4
2.1 Erwan Le Grand . 4
2.2 Nathan Champagne . 4
2.3 Alexis Latournerie . 5
2.4 Thomas Graveline–Mercier . 5

3 Finalisation du projet 5
3.1 Traitement de l’image et détection des lignes 5
3.2 Rotation de l’image . 5
3.3 Détection de la grille et de la position des cases 5
3.4 Réseau de neurones . 5
3.5 Algorithme de résolution du sudoku - Solveur 6

4 Aspects techniques 7
4.1 Rotation manuelle de l’image . 7
4.2 Traitement de l’image . 8

4.2.1 Chargement d’une image et suppression des couleurs 8
4.2.2 Amélioration du contraste . 9
4.2.3 Filtre médian . 9

4.3 Filtre Bilatéral . 10
4.3.1 Filtre de Sobel . 11
4.3.2 Seuillages . 12

4.4 Détection de la grille et de la position des cases 14
4.4.1 Transformée de Hough . 14
4.4.2 Rotation automatique de l’image 16
4.4.3 Simplification des lignes . 16
4.4.4 Calcul des intersections et d’une matrice d’intersections 16
4.4.5 Position de la grille et des cases 17
4.4.6 Correction de la perspective . 17
4.4.7 Traitement des cases . 19

4.5 Réseau de neurones . 19
4.5.1 Fonctionnement général de l’IA 19
4.5.2 Mise en forme des bases de données 22
4.5.3 Utilisation de notre réseau de neurones 23
4.5.4 Système de sauvegarde et de chargement de modèle 24
4.5.5 XOR . 25
4.5.6 Images . 26
4.5.7 Intégration dans le processus de résolution 27

4.6 Algorithme de résolution du sudoku - Solveur 28
4.7 Interface graphique . 30

4.7.1 Page Principale . 31
4.7.2 Page de Paramètres . 35
4.7.3 Page de Corrections . 36
4.7.4 Multithreading . 37

Projet S3 - EPITA 2027 2

A2NT OCR Sudoku Solver

4.7.5 Affichage de la solution . 38

5 Conclusion 40

Projet S3 - EPITA 2027 3

A2NT OCR Sudoku Solver

1 Introduction

1.1 Présentation du groupe

Notre groupe est composé des 4 mêmes membres que lors du projet du S2. Ce choix
est dû à la cohésion de groupe et le sérieux dont nous avions tous fait part. Il était donc
naturel de se remettre ensemble pour ce projet d’OCR.

Nous nous sommes répartis les tâches en fonction de nos préférences pour ce projet,
mais aussi de nos capacités. Il était important de nous voir régulièrement et de travailler
dans un même espace pour que l’on puisse avancer de manière coordonnée, c’est pourquoi
nous nous sommes rejoints de nombreuses fois à EPITA pour continuer l’avancement du
projet.

1.2 Description d’un OCR et du projet

Un OCR, ou Reconnaissance Optique de Caractères, est une technique qui, à partir
d’un procédé optique, permet à un système informatique de lire et de stocker de façon
automatique du texte dactylographié, imprimé ou manuscrit sans qu’on ait à retaper ce
dernier.

Ce procédé permet donc de numériser un document, c’est-à-dire de le posséder physi-
quement et de le retrouver numériquement exactement conforme à celui physique. Cette
technologie repose sur des algorithmes de traitement d’image et de reconnaissance de
caractères, qui sont conçus pour identifier les caractères individuels présents dans l’image
et les convertir en une forme de texte codé.

Nous utilisons de nombreux OCR dans la vie de tous les jours, car dès que, par exemple
on scanne ou numérise un livre, la technologie sous-jacente à ces fonctionnalités est un
OCR.

Le projet consiste à réaliser un OCR sur une image de grille de sudoku afin de recon-
naître les chiffres, de résoudre le sudoku et d’afficher le résultat pour l’utilisateur.

2 Répartition des charges

2.1 Erwan Le Grand

La première grande étape pour détecter les lignes de la grille de sudoku de manière
fiable est d’appliquer des traitements adaptés sur l’image et de réduire au maximum
l’impact des défauts des images sur la détection des lignes.

2.2 Nathan Champagne

Pour réaliser un OCR, il faut développer une intelligence artificielle capable de détec-
ter et reconnaître des chiffres. Cette intelligence artificielle doit pouvoir s’entraîner sur
une base de données d’images et pouvoir prédire le chiffre contenu dans une image.

Projet S3 - EPITA 2027 4

A2NT OCR Sudoku Solver

2.3 Alexis Latournerie

Dans un OCR, il faut aussi gérer la rotation et le redimensionnement de l’image. Il
est aussi nécessaire de détecter la grille et les cases après le traitement de l’image, la dé-
tection des lignes et la simplification de celles-ci. De plus, il a été nécessaire de créer une
gestion par threads multiple, afin que les calculs s’exécutent en arrière-plan sans bloquer
l’interface de l’utilisateur.

2.4 Thomas Graveline–Mercier

Un autre pré-requis est de réaliser un algorithme qui résout un sudoku, appelé solveur,
de manière complète et fonctionnelle, en 9x9 ainsi qu’en hexadécimal (en 16x16).

Il est aussi important de faire une interface graphique pour pouvoir interagir avec tous
les éléments créés lors du processus de l’OCR.

3 Finalisation du projet

3.1 Traitement de l’image et détection des lignes

Les différentes étapes de pré-traitement de l’image et de détection des lignes ont été
implémentées en totalité :

— chargement d’une image
— suppression des couleurs
— amélioration du contraste
— réduction du bruit
— détection des contours
— détection des lignes
— simplification des lignes

Cependant il reste quelques ajustements à réaliser au niveau de la réduction du bruit et
de la détermination des seuils de détection afin que ces derniers soit automatiquement
géré en fonction du niveau de bruit de l’image.

3.2 Rotation de l’image

La rotation manuelle de l’image est complètement implémentée. Elle permet d’effec-
tuer une rotation depuis n’importe quel angle saisi par l’utilisateur. Elle s’effectue aussi
automatiquement une fois les lignes directrices de l’image détectée.

3.3 Détection de la grille et de la position des cases

La détection de la grille et de la position des cases est implémentée. Nous avons aussi
réalisé une correction de la perspective de l’image, en fonction des quatre coins de la grille
détectée.

3.4 Réseau de neurones

Nous avons commencé la réalisation du réseau de neurones par comprendre tout le
procédé mathématique de ce dernier ainsi que son vocabulaire. Tout de suite, nous avons
trouvé très judicieux de travailler avec des matrices pour pouvoir travailler en groupe de
neurones, couche après couche de manière très simple au lieu de devoir travailler neurone

Projet S3 - EPITA 2027 5

A2NT OCR Sudoku Solver

par neurone de manière individuelle.

3.5 Algorithme de résolution du sudoku - Solveur

La résolution du sudoku a été conçue depuis le début de la validation des groupes de
l’OCR et s’est poursuivie tout du long de la durée jusqu’à la première soutenance. La
méthode de résolution a été réfléchie et repensée plusieurs fois pour permettre d’avoir un
solveur efficace et optimisé.

Ainsi, nous avons développé plusieurs solveurs fonctionnels, mais qui ne correspon-
daient pas à nos attentes. Lorsque la méthode finale a été trouvée, une phase de résolution
manuscrite a pris place.

Il s’agissait de bien visualiser comment s’y prendre pour réaliser ce solveur et ne pas
perdre de temps dessus. Les premiers solveurs n’étant aucunement une perte de temps,
car ils ont permis d’avoir des fonctions basiques réutilisables, mais aussi un apprentissage
de comment il faut s’y prendre pour résoudre un sudoku.

Notre solveur final à ainsi directement pu etre implémenté pour résoudre un sudoku
normal (en 9x9) et en hexadécimal (en 16x16).

Figure 1 – Différence entre un hexadoku et un sudoku

Projet S3 - EPITA 2027 6

A2NT OCR Sudoku Solver

4 Aspects techniques

4.1 Rotation manuelle de l’image

Il est important de pouvoir effectuer une rotation sur les images en fonction de n’im-
porte quel angle. Pour ce faire nous avons implémenté une rotation par "shearing". Cela
consiste à faire un produit entre les coordonnées et les fonctions de trigonométrie. On
agrandit l’image pour garder le même nombre de pixels.

x′

y′

 =

 cosθ sinθ

−sinθ cosθ

 ·

x
y



Mais cette méthode comporte un défaut, pour les angles proches des diagonales de
l’image, cela crée beaucoup de crénelage (aliasing). Cela vient du fait de simplifier des
cosinus et des sinus en nombre entier pour en faire des coordonnées. À cause de cela
beaucoup de points ou de motifs noirs apparaissent à l’image, car aucun pixel n’a été
trouvé pour ces coordonnées.

Pour pallier cela, nous avons effectué cette transformation de manière plus précise en
appliquant la méthode "3 shears rotation". Cette méthode est identique à la première,
mais au lieu de multiplier par une matrice de transformation, on effectue le produit de
3 matrices de transformation pour chaque pixel. Cela permet de ne plus avoir l’effet de
crénelage et d’être plus précis.x′

y′

 =

1 −tan(θ/2)

0 1

 ·

 1 0

sinθ 1

 ·

1 −tan(θ/2)

0 1

 ·

x
y


Nous pouvons donc grâce à cette méthode, effectuer la rotation depuis n’importe quel
angle compris entre -90° et 90°. Afin d’effectuer la rotation pour tous les angles possible,
si nous ne sommes pas compris entre ces deux angles, nous retournons d’abord l’image
(rotation à 180°) en inversant les coordonnées des pixels puis appliquons la méthode de
rotation "3 shears rotation".

Afin de travailler avec une image sans bordure de vide, nous prenons ensuite, le plus
grand rectangle possible de l’image où la rotation a été effectuée.

Projet S3 - EPITA 2027 7

A2NT OCR Sudoku Solver

Figure 2 – Rotation de l’image suivant un angle de 35°

4.2 Traitement de l’image

Pour le traitement des images, nous avons opté pour la détection de contours de Canny,
qui se décompose en plusieurs étapes que nous allons expliquer dans les sections suivantes.

4.2.1 Chargement d’une image et suppression des couleurs

La première étape est de charger une image et de la convertir dans le format souhaité
pour le traitement d’image. En l’occurrence, notre traitement d’image utilise le format
SDL_PIXELFORMAT_RGBA8888, c’est-à-dire que chaque pixel est encodé sur 32 bits
avec ses 4 composantes R, G, B, et A chacune encodée sur 8bits.

Afin que le traitement d’image fonctionne dans un temps raisonnable sur des images
de grandes tailles nous avons mis en place un redimensionnement automatique afin de
garder des dimensions inférieures ou égales à 1500 pixels en hauteur et en largeur tout
en conservant les proportions de l’image bien sûr.

Ensuite, nous convertissons l’image en nuances de gris en calculant pour chaque pixel
sa luminance

L = 0.2126R + 0.7152V + 0.0722B

Puis nous remplaçons les composantes R, G, et B du pixel par sa luminance L et nous
mettons la composante A à 255.

Projet S3 - EPITA 2027 8

A2NT OCR Sudoku Solver

4.2.2 Amélioration du contraste

Ensuite, on améliore le contraste de l’image. Pour cela, on génère l’histogramme de
l’image qui contient pour chaque intensité i ∈ J0, 255K le nombre de pixels d’intensité
i. Notons Ni le nombre de pixels d’intensité i. On cherche alors imin et imax tel que
∀i ∈ J0, iminJ∪Kimax, 255K, Ni = 0. On a alors Jimin, imaxK qui correspond à la dynamique
de l’image initiale. Ensuite, pour chaque pixel d’intensité i, on applique une fonction de
transformation linéaire afin d’obtenir sa nouvelle intensité i′.

i′ =
255

imax − imin

(i− imin)

Figure 3 – Suppression des couleurs et amélioration du contraste.

4.2.3 Filtre médian

Pour réduire le bruit potentiel de l’image, on applique un filtre médian. Le principe
est simple, pour chaque pixel de l’image, on construit une liste qui contient la valeur du
pixel courant et les valeurs de ses pixels voisins dans un rayon de 1 pixel. Ensuite, on trie
cette liste (avec un algorithme de tri par insertion) et on cherche la valeur médiane qui
correspond à la nouvelle valeur du pixel courant.

Par exemple, prenons le voisinage d’un pixel dans un rayon de 1 pixel :


3 2 3

4 7 9

5 1 8


Le pixel courant est le pixel au centre de la matrice.
On obtient ensuite cette liste triée :

[
1 2 3 3 4 5 7 8 9

]
La nouvelle valeur du pixel courant est donc 4.

Projet S3 - EPITA 2027 9

A2NT OCR Sudoku Solver

Figure 4 – Filtre médian : avant / après

4.3 Filtre Bilatéral

Le filtre bilatéral est une technique de traitement d’image utilisée pour réduire le bruit
tout en préservant les contours. Il combine deux composantes principales : la similarité
spatiale et la similarité d’intensité.

Le filtre bilatéral agit en filtrant une image I en fonction de la similarité spatiale et
de la similarité d’intensité. La formule générale du filtre bilatéral pour chaque pixel de
l’image est donnée par :

I ′(x, y) =
1

Wp

∑
(i,j)∈N

I(i, j) · w(i, j, x, y)

Où :
— I ′(x, y) est la valeur du pixel filtré,
— Wp est la normalisation,
— N est le voisinage du pixel (x, y),
— w(i, j, x, y) est la fonction de poids basée sur la similarité spatiale et d’intensité.
La fonction de poids w est donnée par :

w(i, j, x, y) = ωs · exp
(
−(i− x)2 + (j − y)2

2σ2
s

)
· exp

(
−∥I(i, j)− I(x, y)∥2

2σ2
r

)
Où :
— ωs est le poids spatial,
— σs contrôle la décroissance de la similarité spatiale,
— σr contrôle la décroissance de la similarité d’intensité.
Ci-dessous, deux images illustrant l’effet du filtre bilatéral avant et après son applica-

tion.

Projet S3 - EPITA 2027 10

A2NT OCR Sudoku Solver

Figure 5 – Visualisation de l’influence spatiale et de l’incluence des intensités

Figure 6 – Filtre bilatéral : avant / après

4.3.1 Filtre de Sobel

Le filtre de Sobel permet d’obtenir l’intensité et l’orientation des contours. Pour cela,
on génère deux images :

Gx =


−1 0 1

−2 0 2

−1 0 1

 ∗ A Gy =


−1 −2 −1

0 0 0

1 2 1

 ∗ A

Gx et Gy correspondent respectivement à l’approximation de la dérivée horizontale
et verticale de l’image initiale A. Ensuite, on peut obtenir une approximation de la
norme/intensité du gradient ainsi que son orientation :

Projet S3 - EPITA 2027 11

A2NT OCR Sudoku Solver

G =
√

G2
x +G2

y Θ = atan2(Gy, Gx)

Figure 7 – Image d’origine

Figure 8 – Intensité du gradient / Orientation du gradient

4.3.2 Seuillages

4.3.2.1 Suppression des non-maxima

On ne peut pas déterminer si un point appartient à un contour seulement à partir de
l’intensité du gradient en ce point. En effet, une forte intensité nous indique qu’il y a une
forte probabilité de présence de contours, mais ce n’est pas suffisant pour se décider. Nous
nous aidons donc de l’orientation du gradient calculée au préalable afin de supprimer les
non-maxima.

4.3.2.2 Seuillage des contours

Après avoir supprimé les non-maxima, nous utilisons un seuillage à hystérésis qui né-
cessite de classer les pixels dans trois catégories. On utilise d’abord la méthode d’Otsu
afin de trouver un seuil haut s1 adapté à l’image. Puis, nous définissons le seuil bas

Projet S3 - EPITA 2027 12

A2NT OCR Sudoku Solver

s2 = 0.5s1. Ensuite, pour chaque pixel dans l’image du gradient d’intensité, on compare
son intensité avec les deux seuils. Notons i l’intensité d’un pixel :

— si i > s1 alors le pixel sera catégorisé comme fort et on met la valeur du pixel à 255
(pixel blanc)

— si s2 < i ≤ s1 alors le pixel sera catégorisé comme faible.
— si i ≤ s2 alors on met la valeur du pixel à 0 (pixel noir).

Enfin, pour chaque pixel faible, si un de ses voisins (directs ou en diagonale dans un
rayon de 1 pixel) est un pixel fort, alors le pixel est mis en blanc sinon il est mis en noir.
À l’issue de cette dernière étape du filtre de Canny, nous obtenons une image en noir et
blanc.

Figure 9 – Seuillage à hystérésis

Projet S3 - EPITA 2027 13

A2NT OCR Sudoku Solver

4.4 Détection de la grille et de la position des cases

4.4.1 Transformée de Hough

Pour détecter les lignes de notre grille de sudoku, nous utilisons la transformée de
Hough. Pour en expliquer simplement le principe, chaque droite dans l’image peut être
caractérisée par deux paramètres : ρ et θ où ρ est la distance de la droite à l’origine du
repère et θ est l’angle que fait la perpendiculaire à la droite avec l’axe x (système de
coordonnée polaire).

Figure 10 – Passage en coordonnée polaire pour les droites

Tout d’abord, on créer un accumulateur (une sorte d’histogramme) qui représente
l’espace des paramètres ρ et θ. Une droite dans l’image correspond donc à un point dans
l’espace des paramètres. Dans notre image avec les contours détectés préalablement, pour
chaque pixel blanc de coordonée (x, y), on cherche toutes les droites passant par ce point.
Pour cela, on fait varier θ entre 0 et π et on calcul ρ = x × cos θ + y × sin θ puis on
incrémente la valeur de l’accumulateur aux coordonnées (θ, ρ).

Une fois l’accumulateur généré, on le parcours une première fois pour chercher la
valeur maximum de l’accumulateur. Puis, on le parcours une seconde fois et on regarde
si la valeur courante est supérieur à un certain pourcentage du maximum. Si oui, les
coordonnées (θ, ρ) de cette valeur dans l’accumulateur nous permettent d’identifier une
droite dans l’image ayant pour équation :

y = (−cos θ

sin θ
)x+ (

ρ

sin θ
)

Pour dessiner les lignes sur l’image nous avons utilisé l’algorithme de Bresenham.

Projet S3 - EPITA 2027 14

A2NT OCR Sudoku Solver

Figure 11 – Lignes détectées

Figure 12 – Visualisation de l’accumulateur

Projet S3 - EPITA 2027 15

A2NT OCR Sudoku Solver

4.4.2 Rotation automatique de l’image

La rotation automatique récupère l’angle des lignes directrices détectés auparavant et
applique la fonction de rotation détaillé plus haut.

4.4.3 Simplification des lignes

Au moment du parcours des valeurs de l’accumulateur, si des valeurs sont supérieures
au seuil de détection et que leur coordonnées dans l’accumulateur sont proches, nous les
fusionnons afin de réduire le nombre de lignes détectées. Une fois qu’il ne reste plus que
quelques lignes, et que celles-ci ont la direction des lignes de la grille, il peut en res-
ter quelques-unes qui avaient la même direction à cause d’autres éléments présents dans
l’image. Tout d’abord nous trions ces lignes. Afin de les supprimer, tant que nous n’avons
pas le bon nombre de lignes (10 horizontales et 10 verticales), nous calculons les distances
entre les droites, puis nous supprimons la première ou la dernière en fonction de celle qui
est la plus éloignée de la moyenne des distances ou des votes récupérés par la transformé
de Hough quand l’écart entre les deux lignes les plus éloignés est trop faible pour prendre
une décision.

Figure 13 – Lignes simplifiées

4.4.4 Calcul des intersections et d’une matrice d’intersections

Une fois les lignes simplifiées, il reste uniquement 10 lignes horizontales et 10 lignes
verticales. Il faut donc calculer les intersections entre ces lignes. Notre première idée était
de calculer l’équation des droites afin de résoudre un système d’équation et de trouver
l’intersection. Cependant, nous travaillons avec des lignes verticales qui ont donc une
pente infinie et résoudre un système d’équation est coûteux. Nos lignes sont représentées

Projet S3 - EPITA 2027 16

A2NT OCR Sudoku Solver

avec deux points, en dehors de l’image, de chaque côté de celle-ci. Nous pouvons donc
calculer les intersections grâce à ces points.

Figure 14 – Intersection de deux droites

x =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3x4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

y =
(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

Une fois les insertions calculées, nous les avons triées et mises sous la forme d’une
matrice de points 10*10.

4.4.5 Position de la grille et des cases

Grâce à la matrice d’intersection, nous pouvons en déduire la position de la grille et
celle des cases. Si on nomme M, la matrice d’intersection. Alors la grille est le quadri-
latère formé par les intersections aux quatre coins de la matrice, c’est-à-dire les points
M1,1,M1,10,M10,10,M10,1.

De même, nous pouvons en déduire les quadrilatères des cases grâce à cette matrice.

∀(i, j) ∈ J1; 10K2, casei,j = □Mi,jMi+1,jMi+1,j+1Mi,j+1

4.4.6 Correction de la perspective

Pour réaliser la correction de la perspective de l’image, nous avons mis en œuvre une
correction de la perspective en utilisant une matrice homographique. Cette matrice, no-
tée H, permet de transformer les coordonnées homogènes (x, y, 1) d’un point de l’image
d’origine vers une vue corrigée, compensant ainsi les distorsions liées à la perspective.

La matrice homographique H est définie comme suit :

H =


h11 h12 h13

h21 h22 h23

h31 h32 1


Projet S3 - EPITA 2027 17

A2NT OCR Sudoku Solver

Les coefficients de cette matrice sont calculés en résolvant un système d’équations li-
néaires basé sur des correspondances de points entre l’image d’origine et l’image corrigée.

Pour corriger la perspective, nous avons besoin de calculer l’inverse de la matrice
homographique, noté H−1. La détermination de l’inverse implique des calculs minutieux
basés sur les mineurs, le déterminant et les cofacteurs. Pour commencer, le déterminant
de la matrice homographique det(H) est crucial pour la normalisation de l’inverse. Il se
calcule comme le produit des éléments diagonaux moins le produit des termes croisés :

det(H) = h11(h22h33 − h23h32)− h12(h21h33 − h23h31) + h13(h21h32 − h22h31)

Ensuite, les cofacteurs de chaque élément de la matrice homographique sont utilisés
pour former la matrice adjointe adj(H). Les cofacteurs sont déterminés en alternant les
signes des mineurs associés à chaque élément, où le mineur est obtenu en éliminant la
ligne et la colonne de l’élément considéré. Par exemple, le cofacteur C11 associé à h11 est
donné par :

C11 = (−1)1+1 ·M11

où M11 est le mineur associé à h11.
La matrice adjointe est alors formée en plaçant les cofacteurs dans une matrice trans-

posée :

adj(H) =


C11 C21 C31

C12 C22 C32

C13 C23 C33


Enfin, l’inverse de la matrice homographique est obtenu en divisant la matrice adjointe

par le déterminant :

H−1 =
1

det(H)
· adj(H)

Figure 15 – Correction de la perspective

Projet S3 - EPITA 2027 18

A2NT OCR Sudoku Solver

4.4.7 Traitement des cases

Après avoir obtenu la position des cases, on prend chaque cases de l’image après
suppression des couleurs, on applique un filtre négatif et un seuillage par hystérésis avec
un seuil haut obtenu grâce à la méthode d’Otsu. Cependant, il peut parfois rester des
résidus de lignes apparents sur les cases, ce qui pourrait nuire à la bonne reconnaissance
des chiffres par le réseau de neurones. Nous enlevons donc les résidus de lignes restantes
en partant des bordures de la case (avec un rayon de 3 pixels car les lignes peuvent
parfois ne pas être collées aux bordures de la case) et en supprimant récursivement les
pixels blancs et ceux voisins. Notons l’importance du traiment préalable de la case car si
des résidus de lignes sont connectés aux chiffres, ces derniers seront effacés et considérés
comme des résidus nuisibles.

4.5 Réseau de neurones

4.5.1 Fonctionnement général de l’IA

Nous avons travaillé avec des structures matricielles pour pouvoir simplifier le plus
possible les formules mathématiques et ainsi le risque d’erreur.

Les matrices ont été implémentées de cette manière de façon à stocker les dimensions
des matrices plus facilement :

typedef struct
{

size_t rows;
size_t cols;
double matrix[];

}Matrix;

Une IA fonctionne avec des couches constituées de neurones (comme le montrent les
images ci-après).

Figure 16 – Neurone IA

Les neurones possèdent des poids notés wi et un biais noté b. Pour entraîner un modèle,
il faut modifier la valeur de ses poids et biais de façon à obtenir les meilleurs résultats
possibles.

Projet S3 - EPITA 2027 19

A2NT OCR Sudoku Solver

Figure 17 – Schématisation IA

Chaque couche de notre réseau (sauf la couche d’entrée) est constituée des matrices :

W (Matrices des poids des neurones de la couche)
↪→ dimensions (nombre neurones couche actuelle, nombre neurones couche précédente)

B (Matrices des biais des neurones de la couche)
↪→ dimensions (nombre neurones couche actuelle, 1)

A (Matrices des valeurs de sortie des neurones de la couche)
↪→ dimensions (nombre neurones couche actuelle, nombre de données)

La couche d’entrée possède seulement une matrice A pour les données à traiter.

4.5.1.1 Mécanisme de notre réseau de neurones

Notre réseau de neurones est un réseau pouvant être multicouche. Par exemple pour
le modèle du XOR, un réseau avec une couche d’entrée de deux neurones, une couche
cachée de trois neurones et une couche de sortie d’un neurone est totalement adapté et
suffisant. Alors que pour un modèle plus conséquent comme celui des images de chiffres
en 28 par 28 pixels, avoir deux couches cachées peut s’avérer utile.

Enfin chaque couche possède une fonction d’activation qui permet d’uniformiser les
sorties. Dans notre cas, nous utilisons des fonctions sigmoïde et éventuellement softmax
pour la couche de sortie dans le cas d’une classification de plus de deux éléments (c’est
le cas pour les images de chiffres où il peut y avoir neuf cas pour les chiffres de 1 à 9).

Pour pouvoir utiliser un réseau de neurones et faire des prédictions, il faut l’entraîner.
Pour ce faire, on fixe un nombre d’époques qui correspond au nombre d’itérations des
processus de propagations avant/arrière (définis ci-après). Une fois les époques terminées,
il faut tester notre modèle sur des données et calculer sa précision (qui correspond au
nombre de bonnes prédictions divisé par le nombre de prédictions totales).

Voici le principe mathématique simplifié des deux étapes majeures de l’entraînement
de notre réseau de neurones et de la fonction coût choisie.

Projet S3 - EPITA 2027 20

A2NT OCR Sudoku Solver

4.5.1.2 Propagation avant

Lors de cette phase, le réseau de neurones calcule les sorties de chaque couche les unes
après les autres.
On peut utiliser cette formule appliquée de la couche 2 jusqu’à la dernière couche :
[C] : couche actuelle, [C − 1] couche précédente.

A[C] = σ(W [C] · A[C − 1])

σ étant une fonction d’activation (sigmoïde ou softmax)

4.5.1.3 Propagation arrière

Lors de cette phase, on cherche à mettre à jour les poids et biais de notre modèle pour
obtenir de meilleures prédictions. Pour ce faire il faut préalablement choisir une fonc-
tion coût notée L qui calcule l’erreur de notre modèle. Nous avons choisi la fonction Log
Loss pour faire cela plutôt que la fonction d’erreur quadratique qui est moins performante.

L = − 1

m

∑
(Y · log(A[f]) + (1− Y) · log(1− A[f]))

avec Y la sortie attendue et A[f] la sortie d’activation de la dernière couche du réseau.

Une fois cette fonction définie, on calcule une matrice δ pour chaque couche (en par-
tant de la dernière jusqu’à la première) qui servira au calcul des dérivées partielles des
poids et des biais de la couche.

On définit la matrice δ de la couche de sortie par

δ[C] = A[f]− Y

avec Y la sortie attendue et A[f] la sortie de la dernière couche de notre réseau de neurones

Ensuite, on peut définir récursivement jusqu’à la première couche avec L la fonction
coût 

∂L
∂W [C]

= A[C − 1] · δ[C]

∂L
∂B[C]

= sommeParLigne(δ[C])

δ[C − 1] = W [C]t · δ[C]⊙ σ′(A[C − 1])

⊙ est le produit d’Hadamard et sommeParLigne une fonction qui calcule la somme de
chaque ligne de la matrice et retourne la matrice résultante.

Projet S3 - EPITA 2027 21

A2NT OCR Sudoku Solver

Enfin, il suffit de mettre à jour les paramètres de l’IA avec ces formules à chaque
itération d’entraînement de notre réseau et pour chaque lot de données

W [C] = W [C]− µ× ∂L

∂W [C]

B[C] = B[C]− µ× ∂L

∂B[C]

µ étant la vitesse d’apprentissage qui est une valeur définie par l’utilisateur et qui dépend
du modèle.

Il est aussi intéressant de remarquer que l’utilisation de matrices permet très facilement
d’entraîner plusieurs données d’un seul coup. En effet, les dimensions des matrices W et
B qui caractérise notre réseau de neurones ne dépendent que du nombre de neurones
et non du nombre de données. Ainsi en choisissant m pour le nombre de colonnes de la
matrice A, les formules restent toujours vraies et il sera possible d’entraîner m données
simultanément. Ce m est appelé "batch size" ou "taille du lot" en français. Plus il est
élevé plus le modèle va réussir à généraliser en prenant une moyenne des m données,
mais à l’inverse s’il est trop grand le modèle ne va plus réussir à voir les spécificités et ne
sera plus précis. Nous avons aussi mis en place un mélange aléatoire des données entre
chaque époque ce qui permet de ne pas prendre toujours les mêmes lots et par conséquent
d’augmenter la capacité de généralisation de notre modèle.

4.5.2 Mise en forme des bases de données

Pour charger en mémoire, il est essentiel d’allouer en mémoire toutes les données. Mais
pour cela, il faut connaître la taille/le nombre de données à allouer. C’est le rôle des en-
têtes que nous avons développées qui se trouvent juste au-dessus des données à traiter
(en orange dans l’image ci-dessous).

Par exemple, le "nb_data" renseigne le nombre de données d’entraînement contenu
dans ce fichier, "nb_input_param" contient le nombre de données pour la première
couche du réseau (c’est aussi le nombre de neurones de la première couche), respecti-
vement avec "nb_output_param" qui est aussi le nombre de neurones de la couche de
sortie.

Figure 18 – Exemple de la base de données du XOR

Projet S3 - EPITA 2027 22

A2NT OCR Sudoku Solver

Une fois que les en-têtes ont été pris en compte, on peut stocker les données d’entrée
(en bleue) et de sortie (en rouge) du modèle. Et on reconnaît dans la première ligne que
0⊕ 0 = 0 et qu’à la ligne suivante 0⊕ 1 = 1 et ainsi de suite.

La même logique a été adoptée avec la base de données d’images, mais sur 28*28 don-
nées d’entrée (une entrée pour chaque pixel d’une image de 28 par 28).

De plus pour optimiser la mémoire, au lieu de stocker ces données de manière contiguë
dans une liste de liste d’entiers ou de flottants, nous avons préféré les stocker sous la
forme de listes de pointeurs vers les données de façons individuelles.

4.5.3 Utilisation de notre réseau de neurones

Notre réseau de neurones peut s’utiliser très simplement grâce à des arguments dans la
phase d’exécution. Par exemple "-m" choisi le modèle voulu (xor ou images) "-l" change
le pas d’apprentissage de l’IA, "-e" change le nombre d’itérations lors de l’entraînement
ou encore "-train"/"-test" qui fixe le nombre de données pour entraîner et tester notre
modèle. Enfin le "-b" sert à changer le nombre de données à passer en simultané (le batch
size). Il existe d’autres arguments pour charger un modèle déjà entraîné, changer les bases
de données. . .

Figure 19 – Changement des paramètres de l’IA

Une fois notre IA lancée, toutes les étapes sont clairement affichées pour informer en
temps réel d’utilisateur de l’avancée. Dans le cas ci-dessous, la première étape est de
charger les arguments donnés dans la console (ceux non renseignés sont pris par défaut
selon le modèle)

L’étape d’initialisation charge en mémoire l’ensemble de la base de données d’entraî-
nement (sous forme de liste de pointeurs vers chaque donnée pour éviter un trop gros
stockage contigu en mémoire).

L’étape d’entraînement va appliquer les processus de propagation avant et arrière en
boucle pour ajuster le plus possible et de la meilleure des manières les poids et les biais
de chaque neurone.

Une fois entraîné, il faut tester la précision de notre modèle, c’est le rôle de la fin de
notre programme. Après avoir libéré en mémoire les données d’entraînement, il charge les
données de test et fait une prédiction avec les poids et biais trouvés avec l’entraînement.
La précision de notre modèle est calculée finalement en faisant le nombre de bonnes pré-
dictions divisé par le nombre de données de tests.

Projet S3 - EPITA 2027 23

A2NT OCR Sudoku Solver

Figure 20 – Aperçu de l’IA dans la console

4.5.4 Système de sauvegarde et de chargement de modèle

Une chose importante pour une intelligence artificielle est de pouvoir charger un mo-
dèle déjà pré-entraîné. Cela permet de ne pas devoir le ré-entraîner à chaque fois que l’on
veut prédire par exemple un chiffre.

Nous avons ainsi mis en place un système de sauvegarde qui, après entraînement,
stocke tous les poids/biais de chaque couche de notre modèle dans un fichier. Et réci-
proquement, un système pour charger ce fichier en remplissant les matrices W et B de
chaque couche.

À la fin de chaque entraînement, il est demandé si nous voulons sauvegarder ou non
ce modèle. Si nous voulons sauvegarder, un nom du fichier de sauvegarde sera demandé
puis un fichier sera créé. Il est aussi possible de charger ce modèle avec l’argument ’-load’
suivi du nom renseigné lors de la sauvegarde.

Projet S3 - EPITA 2027 24

A2NT OCR Sudoku Solver

Figure 21 – Exemple de procédure pour sauvegarder (en haut) et charger (en bas) un modèle

Cette fonctionnalité peut s’avérer très pratique pour sauvegarder un modèle de recon-
naissance de chiffre sans devoir le ré-entraîner de zéro pour faire une prédiction.

4.5.5 XOR

Notre réseau de neurones est capable de très bien prédire un XOR avec une précision
de 100% après un entraînement très rapide. Une prédiction est considérée comme un 1 si
sa valeur est > 0.5, 0 sinon

Figure 22 – Prédiction de XOR après un entraînement

Le graphique ci-dessous montre l’évolution de la fonction coût en fonction du nombre
d’époques.À partir de 2000 époques l’erreur de notre modèle n’évolue quasiment plus
et nous pouvons remarquer l’apparition d’une asymptote horizontale, signe que le mo-
dèle est déjà assez entraîné et ne pourra plus beaucoup s’améliorer avec ces paramètres
d’entraînement (vitesse d’apprentissage, configuration des couches, taille des lots, ...).

Projet S3 - EPITA 2027 25

A2NT OCR Sudoku Solver

Figure 23 – Évolution de la fonction coût en fonction des époques

4.5.6 Images

Enfin notre réseau de neurones fonctionne aussi sur des images de chiffres. Nous avons
par exemple essayé sur les bases de données mnist/emnist qui contiennent plusieurs cen-
taines de milliers d’exemples d’images de chiffres. Avec ces derniers, il a été possible
d’atteindre des précisions de 97/98% sur des bases de données de test différentes de celles
d’entraînement (que le modèle n’avait encore jamais vu). Tandis que sur la même base
de données pour tester, il est possible de frôler les 100% de précision.

Par la suite, nous avons créé notre propre base de données à l’aide d’un script python
qui a partir de police d’écriture nous donne des images de 1 à 9. Nous avons téléchargé
environ 2000 polices en prenant soin d’enlever les polices fantaisistes qui serait un frein
à l’apprentissage de notre IA

Pour augmenter la généralisation de l’IA, nous avons choisi d’effectuer les mêmes
traitements que sur les cases sur notre base de donnée en commençant par exemple par la
binarisation des images pour avoir seulement du blanc ou du noir et non des nuances de
gris. Ensuite, face au bruit que pouvait avoir certaines images ou aux déformations causées
par le filtre canny, nous avons essayé de récréer un semblant d’aléatoire. Nous avons décidé
d’une probabilité d’apparition de pixels blanc/noir dans l’image à des positions aléatoires.
Le but étant que l’ia comprenne que l’important dans l’image est le chiffre et non tous
les résidus qui peuvent être autour.

Projet S3 - EPITA 2027 26

A2NT OCR Sudoku Solver

Figure 24 – Exemple de chiffres dans notre base de données

En plus de ces déformations, nous avons la possibilité de répété chaque chiffre plusieurs
fois, mais à des positions différentes, car les chiffres ne seront pas toujours exactement
au milieu. Et comme notre IA mélange les données lors de l’entrainement, il n’y a pas de
risque qu’elles se retrouvent toujours dans le même lot, ce qui pourrait fausser les résultats.

Avec toutes ces images, nous avons pu créer des bases de données de 20 000, 40 000,
voire 200 000 images très simplement.

Mais nous avons oublié un point majeur, les base de données comme mnist proposé
directement leur donnée sous forme de csv ou en format binaire directement. Or ici, nous
disposons seulement d’image au format png. Il a donc fallu créer différente fonction pour
convertir des images png en matrice pour ensuite pouvoir écrire dans un seul même fichier
toutes les données dans le même format que décrit précédemment avec la base de données
du XOR.

4.5.7 Intégration dans le processus de résolution

Maintenant que nous avons une IA fonctionnelle, il faut qu’elle puisse faire des prédic-
tions en adéquation avec ce que l’IA reçoit (les cases) et avec ce que le solveur a besoin,
une liste de chiffres et -1 en cas de vide.

Pour ce faire, au lieu de devoir faire un appel différent pour chaque case, nous avons
créé une unique fonction qui prend une liste de SDL_Surface* qui les convertis en matrice
puis effectue la prédiction sur chacune d’entre elles et retourne une liste de chiffres.

Cette implémentation permet très facilement d’intégrer l’IA dans le processus de ré-
solution

Projet S3 - EPITA 2027 27

A2NT OCR Sudoku Solver

4.6 Algorithme de résolution du sudoku - Solveur

L’algorithme de résolution du sudoku, solveur, que nous avons implémenté peut gérer
des sudokus dits normaux (en 9x9) ainsi que des hexadokus (en 16x16).

Nous avons créé une fonction qui permet de charger une grille depuis un fichier et
une autre qui sauvegarde une grille dans un fichier pour y inscrire le sudoku résolu. La
fonction de chargement permet aussi de vérifier si le format de la grille donné n’est pas
bon ou si le fichier est inexistant, auxquels cas, le programme renvoie une erreur.
La grille donnée ressemble à :

Figure 25 – Sudoku non résolu

Nous avons ensuite créé une fonction qui vérifie si une valeur peut être mise dans une
cellule. Or notre solveur doit pouvoir résoudre des sudokus et hexadoku qui n’ont pas les
mêmes contraintes. Les chiffres du sudoku vont de 1 à 9 alors que l’hexadoku de 0 à 9
puis de A à F. Il a fallu faire des cas pour bien discerner ces cas de figures.

Après avoir créé les principales fonctions annexes qui pouvaient nous servir, nous
sommes passés à l’une des fonctions les plus importantes de notre programme, la conver-
sion en matrice où chaque case contient l’ensemble des possibilités de chiffre de la case
associé. Ainsi, elle récupère chacune des cases vides de notre sudoku et crée une liste
contenant les possibilités des chiffres en fonction des règles du sudoku (ligne, colonne,
sous-carré).

Après avoir créé cette matrice de listes, nous l’avons ordonnée de manière croissante,
de la case ayant le moins de possibilités à celle en ayant le plus de possibilités de chiffres.

Nous avons par ailleurs, fait en sorte de gérer les principaux cas d’erreurs qui peuvent
survenir lors de la résolution d’un sudoku. Nous avons donc créé une fonction qui regarde
si un élément est présent 2 fois dans une ligne, colonne ou sous-carré, auquel cas le sudoku
est invalide. Le problème principal lorsque l’on ne traite pas cette erreur est que notre

Projet S3 - EPITA 2027 28

A2NT OCR Sudoku Solver

solveur résout quand même le sudoku, mais il est totalement faux, car dès le départ, il
n’est pas solvable.

Nous avons désormais tous les éléments nécessaires pour appliquer la fonction récur-
sive principale du solveur, une méthode qui est appelée "backtracking". Cette fonction
remplie d’abord les cellules du sudoku qui ont le moins de possibilités au plus de possi-
bilité (grâce à la liste que l’on a triée auparavant). Lorsque le programme arrive sur une
case qu’il ne peut pas remplir dû au pré-remplissage des cellules précédentes, il enlève
les valeurs ajoutées aux cellules précédentes jusqu’à là où il est nécessaire d’aller pour ne
plus avoir de problème sur la case qui nous posait soucis, puis il remplit encore une fois.
Il s’arrête lorsqu’il a fini de remplir tout le sudoku ou qu’aucune possibilité n’existe.

La dernière étape consiste à afficher le résultat dans un nouveau fichier. Pour ce faire,
nous créons un nouveau fichier avec pour extension ".result". Notre solveur est désormais
fonctionnel. Voici ce que notre sudoku (figure 21) est devenu :

Figure 26 – Sudoku résolu

Nous avons fourni dans le repo différentes grilles de sudoku à remplir. Il y a plusieurs
sudokus valide, un sudoku non valide, et un hexadoku valide.

Figure 27 – Les différentes grilles de test

Projet S3 - EPITA 2027 29

A2NT OCR Sudoku Solver

4.7 Interface graphique

Pour produire l’interface graphique de notre OCR - Sudoku solveur, nous avons utilisé
glade. Pour préciser, Glade est un outil de conception d’interface graphique (GUI) utilisé
principalement dans le développement de logiciels pour les environnements de bureau
Linux. Il offre un environnement graphique convivial qui permet aux développeurs de créer
des interfaces utilisateur visuelles pour leurs applications sans avoir à écrire manuellement
le code source.

Figure 28 – Aperçu du logiciel Glade

Projet S3 - EPITA 2027 30

A2NT OCR Sudoku Solver

L’interface graphique de notre OCR à été conçue de telle manière que nous pouvons
voir les différentes étapes du processus mais aussi changer des paramètres spécifiques.
Pour cela nous avons choisi de répartir les informations sur trois pages différents pour
que l’utilisateur est une interface épurée et claire. Pour améliorer l’expérience utilisateur
nous avons aussi modifié les couleurs présentes de base dans glade pour mettre un thème
sombre. Ce thème sombre se caractérise par un gris foncé pour le haut et bas de la page,
ceux qui contiennent les boutons prinicipaux. Pour permettre une différence entre chaque
partie, la partie centrale de l’écran est d’un gris plus clair.

Ci-dessous sont présentées les interfaces utilisateurs en fonction des différents pages.

4.7.1 Page Principale

Lorsque nous lançons notre application, nous avons accès à une page principale. Cette
page constitue l’essentiel de notre interface graphique car c’est ici que le traitement de
l’image sera effectué. Nous disposons de plusieurs boutons que nous allons détailler plus
précisément ci-dessous. Au milieu de l’écran nous avons un champ libre avec marqué "No
File" cet endroit est fait pour voir l’image de sudoku qui sera traitée.

Figure 29 – Page principale vide

Pour importer cette image, nous disposons en bas à gauche de la fenetre d’un bouton
qui lorsqu’on clic dessus nous amène dans un explorateur de fichier et nous permet de
choisir une image. Cette image ne peux avoir comme extension que ".png", ".jpg" et
".jpeg". Ce choix est fait pour éviter d’introduire des fichiers qui ne sont pas des images
dans notre interface.

Projet S3 - EPITA 2027 31

A2NT OCR Sudoku Solver

Figure 30 – Page principale avec image

Lorsque l’image est choisie, elle s’affiche à la place du "No File" vu précedemment. Il
est désormais possible de résoudre notre sudoku. Pour cela, le bouton "Solve" est présent
en bas à droite de l’interface. Il est en bleu foncé et ressort donc de notre charte graphique
principale car c’est le bouton le plus important de l’interface graphique. Il change aussi
de couleur lorsque nous passons la souris dessus, pour avoir une teinte de bleu plus claire.

Figure 31 – Erreur d’extension du fichier

Appuyer sur ce bouton permet de résoudre le sudoku présent mais il existe tout de
meme plusieurs cas possibles lors de la résolution. Le sudoku peut tout d’abord etre résolu
ainsi nous verrons les images s’afficher au fur et à mesure qu’elles seront réussies. Il y a
dans l’ordre : le sudoku de base, le grayscale, le contraste, le bilatéral, le sobel, hough
trandform, la rotation automatique et la perspective corrigée puis le sudoku résolu.

Projet S3 - EPITA 2027 32

A2NT OCR Sudoku Solver

Figure 32 – Exemple d’affichage durant le traitement (Etape - Hough)

Le sudoku peux aussi rencontrer différents problèmes tel que la non détection des
cases qui renvoi un "problème dans la détection des lignes" ou encore un "impossible de
résoudre le sudoku" si l’IA s’est trompée lors de la reconnaissance ne serait-ce que d’un
chiffre.

Pour connaitre le fichier pris en charge, il y a tout en haut le nom du fichier mis en
gras. Pour ce qui est de l’étape actuelle, elle est notée en fonction de l’image affichée en
bas de l’image. Pour pouvoir revisualiser les différentes images, nous avons disposé autour
de l’étape actuelle deux boutons de flèches qui permettent de revenir en avant puis en
arrière. Ces boutons ne sont activés que lorsque le bouton "solve" est appuyé avec une
image chargée.

Nous avons aussi disposé deux boutons de rotation de 90 degrés de l’image qui ne sont
aps activables lorsqu’il n’existe pas de fichier inséré dans l’interface, ces boutons sont
aussi désactivés dès lors que le bouton solve est appuyé, cela permet d’éviter de casser le
traitement en cours.

Projet S3 - EPITA 2027 33

A2NT OCR Sudoku Solver

Figure 33 – Rotation de la grille

Pour le reste des informations de cette page, nous avons notre logo qui est présent
tout en haut à gauche de la page, en haut à droite se trouve un bouton croix qui permet
de quitter le programme avec un appui sur bouton.

Les derniers boutons sont : L’engrenage qui amène vers la page de paramètres (voir
sous-section ci-dessous, "Page de paramètres"), le pinceau amène vers la page des correc-
tions (voir sous-section ci-dessous, "Page de corrections") et enfin, il y a un bouton pour
sauvegarder l’image actuelle sur l’interface.

Ce bouton ne fonctionne que si une image est présente, on peu ensuite choisir le nom
du fichier ainsi que l’emplacement où l’on veut le sauvegarder et il ne reste plus qu’à ap-
puyer sur "ok". Il est aussi possible de "cancel" l’action et de ne pas sauvegarder l’image.

Figure 34 – Sauvegarder l’image

Projet S3 - EPITA 2027 34

A2NT OCR Sudoku Solver

4.7.2 Page de Paramètres

La page de paramètres comporte des boutons qui permettent de changer le traitement
de l’image. Tous les boutons sont maximisés à une valeur de 1000. Les kernels ne sont
que des entiers, les 3 autres peuvent avoir 2 chiffres après la virgule. Nous pouvons ainsi
changer pour la hauteur et largeur du kernel. Nous pouvons aussi modifier le treshold
de Hough, le bilatéral brightness ainsi que le spatial. Nous pouvons toujours modifier les
valeurs avec une insertion numérique ou en appuyant sur des boutons "+" ou "-". Les
boutons sont initialisés avec des valeurs par défaut.

Figure 35 – Page de paramètres

Le logo ainsi que le bouton pour quitter l’application sont toujours présentes. Tout
en bas de l’interface, il y a un bouton retour qui permet de revenir à la page principale
évoquée auparavant.

Projet S3 - EPITA 2027 35

A2NT OCR Sudoku Solver

Figure 36 – Changement des valeurs des paramètres

4.7.3 Page de Corrections

La page de correction comporte aussi le même en-tête que les autres pages avec le
logo et la croix pour quitter la page. Le centre de l’interface est un sudoku qui est com-
posé de 81 boutons. Il y a aussi en plus petit au-dessus l’image qui est affichée dans la
fenêtre principale. Les cases sont remplies après avoir résolu l’image. Cette page permet
de changer manuellement si l’image n’a pas pu être résolue, car l’IA aura mal reconnu les
nombres. Il s’agit alors de remettre les bons chiffres aux bons endroits.

Tout en bas de la page, il y a le bouton retour qui ramène vers la page principale ainsi
qu’un bouton solve. Le solve permet de résoudre la grille qui n’avait jusqu’alors pas été
résolue.

Figure 37 – Avant d’avoir appuyé sur solve

Projet S3 - EPITA 2027 36

A2NT OCR Sudoku Solver

Figure 38 – Après avoir appuyé sur solve

4.7.4 Multithreading

Nous avons séparés dans deux threads, donc dans deux fils d’exécutions différents la
partie interface graphique de la partie calcul. Pour ce faire, grâce à des écritures sur des
variables en faisant attention à la synchronisation, nous envoyons à chaque étapes réalisés
toutes les informations à l’interface graphique afin que celle-ci puisse afficher le résultat
de chaque étape à l’utilisateur.

Projet S3 - EPITA 2027 37

A2NT OCR Sudoku Solver

4.7.5 Affichage de la solution

Si tout le processus a fonctionné correctement, notre OCR renvoie une image sem-
blable à l’image d’origine (avec rotation et correction de perspectives si besoin) comme
montré ci-dessous.

Figure 39 – Affichage de la solution pour la grille n°1

Pour réaliser ces chiffres, nous avons opté pour l’utilisation de SDL_ttf qui est une
bibliothèque d’extension qui permet à partir d’une police d’écriture d’écrire sur une image.
La police doit être en format TTF (TrueType)

Projet S3 - EPITA 2027 38

A2NT OCR Sudoku Solver

Figure 40 – Calcul de la position des chiffres

Le calcul de la position est assez simple et peut s’adapter à n’importe quel type de
case. Le calcul de la position (x, y) du chiffre à afficher dans la case (i, j) est le suivant.

w = M [i+ 1, j + 1].X −M [i, j].X (1)
h = M [i+ 1, j + 1].Y −M [i, j].Y (2)
x = M [i, j].X + 0.35× w (3)
y = M [i, j].Y + 0.1× h (4)
taillePolice = 0.7× h (5)

(6)

Le problème est que SDL_ttf ne peut pas directement afficher un chiffre sur une image.
Nous avons donc dû créer une fonction qui fusionne deux SDL_surface une étant le fond
donc l’image de sudoku et l’autre le chiffre. Nous parcourons chaque pixel du chiffre et
si la couche alpha est > 0 alors, nous affichons le chiffre dans la couleur souhaité (ici en
rouge : #FF0000FF)

Projet S3 - EPITA 2027 39

A2NT OCR Sudoku Solver

5 Conclusion

Notre projet OCR a avancé comme nous le souhaitions. Nous pensions que la princi-
pale difficulté du projet serait l’IA, mais ce qui nous a demandé le plus d’efforts et de
réflexion a été le traitement d’image, car les étapes sont très différentes les unes des autres.

Pour autant, l’avancement a été optimal dans de nombreux domaines, notre solveur
répond aux exigences de la soutenance finale ainsi qu’au bonus. Il en va de même pour
notre intelligence artificielle qui a pour autant eu quelques adaptations nécessaires pour
savoir quelle était la meilleure manière de lui faire apprendre. Nous avons en fin de compte
opté pour un entrainement précis et moins généraliste mais nous avons toujours accès au
second entrainement plus géénral.. Concernant le traitement de l’image, la totalité des
prérequis pour cette soutenance ont été atteints et nous avons pu produire tout ce que
nous voulions. Pour rassembler tout cela, nous avons créé une interface graphique qui
englobe toutes les fonctionnalités que nous avons implémentées.

Ce projet d’OCR de sudoku aura été très compliqué, car la charge de travail était très
importante. Cependant, ce projet nous aura permis de consolider notre travail en équipe
et d’encore plus communiquer nos avancées que lors du projet du S2, car nous étions
dépendants les uns des autres.

Projet S3 - EPITA 2027 40

	Introduction
	Présentation du groupe
	Description d'un OCR et du projet

	Répartition des charges
	Erwan Le Grand
	Nathan Champagne
	Alexis Latournerie
	Thomas Graveline–Mercier

	Finalisation du projet
	Traitement de l'image et détection des lignes
	Rotation de l'image
	Détection de la grille et de la position des cases
	Réseau de neurones
	Algorithme de résolution du sudoku - Solveur

	Aspects techniques
	Rotation manuelle de l'image
	Traitement de l'image
	Chargement d'une image et suppression des couleurs
	Amélioration du contraste
	Filtre médian

	Filtre Bilatéral
	Filtre de Sobel
	Seuillages

	Détection de la grille et de la position des cases
	Transformée de Hough
	Rotation automatique de l'image
	Simplification des lignes
	Calcul des intersections et d'une matrice d'intersections
	Position de la grille et des cases
	Correction de la perspective
	Traitement des cases

	Réseau de neurones
	Fonctionnement général de l'IA
	Mise en forme des bases de données
	Utilisation de notre réseau de neurones
	Système de sauvegarde et de chargement de modèle
	XOR
	Images
	Intégration dans le processus de résolution

	Algorithme de résolution du sudoku - Solveur
	Interface graphique
	Page Principale
	Page de Paramètres
	Page de Corrections
	Multithreading
	Affichage de la solution

	Conclusion

